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Abstract

Real-time rendering of complex scenes is a crucial prob-
lem in computer graphics. In this paper we present a simple
and efficient real-time (high frame rate) rendering method
in which the computational cost is almost independent of
the scene geometric complexity. The main advantages of
our method compared to other height field warping ap-
proaches such as Relief Texture Mapping, is that the scene
has no restriction concerning the nature of its geometry.
This method can be considered as an hybrid geometry and
image based representation of the scene, viewed along a 3D
camera path. The final image in an arbitrary viewpoint on
this path is rendered using a very small number of images
corresponding to the reference viewpoints. Real-time ren-
dering is performed using the pixels shaders functionality
of current graphics hardware.

Keywords : real time rendering, viewpoints interpolation,
graphics hardware, interactive walkthrough.

1. Introduction

Rendering at real-time rates of complex scenes com-
posed of huge sets of triangles has always been an important
research in computer graphics. Many different approaches
have been proposed during the past decades that either con-
sist in optimizing visibility computations (such as for in-
stance the occlusion maps [19, 21]), or using textures and
impostors [2, 1, 7, 11, 14, 18], or pure image-based tech-
niques [4, 5, 8, 12, 13]. Hybrid methods combining image-
and geometry based approaches [6, 10, 15, 16, 17, 20] have
also known some noticeable success but all of these meth-
ods still raise several problems like blurring, poping or they
have some restrictions concerning the nature of the scene
geometry. In fact, currently there is no general method that
allows us to render very complex scenes at real-time rates
independently of the scene geometric complexity and with
a high degree of rendering quality.

In this paper, we propose a new hybrid geometry and im-
age based method to provide a solution to this problem. Our
method is suitable for high quality real-time (high frame
rate) rendering of scenes with an arbitrary geometric com-
plexity. It has only one restriction: the viewpoints have to
move along a specified 3D path on which we define key
view points used for per-pixel interpolation. The rendering
is performed fully in hardware and the computation cost is
almost independent of the scene geometric complexity. In
addition memory consumption remains very low. The main
difference with previous techniques is that we do neither
deform the reference images nor do we apply any interpola-
tion among pixel colors. We also do not replace parts of the
geometry by texture maps. Instead, we retrieve the most ac-
curate point of the "real scene" using the key-images to per-
form the reconstruction. Since we do not need to interpo-
late pixel colors, our method requires only a very small set
of reference images. Because our technique reconstructs on
each pixel the "real scene surface", we further can relight
the scene on the fly with standard hardware based shading
models. Essentialy, our method consists of two passes :

• In the first pass, the scene surface is reconstructed ac-
cording to a viewpoint lying on the user-specified path.

• In the second pass, the scene image is computed us-
ing a small set of reference images. We apply our real-
time per-pixel view interpolation technique to recon-
struct this image (see section 3).

Thus, our approach is based on a pre-computed data struc-
ture that consists of a set of z-buffers. For each pixel, we
approximate the depth variation due to the camera motion
along the specified path with a small set of linear varying
intervals stored in the form of textures associated to the z-
buffers. The pre-computed reference images are indepen-
dent of the surface reconstruction and can be obtained with
any software or hardware.

The paper is organized as follows. We briefly present the
related works in section two. The scene surface reconstruc-
tion, for a given viewpoint, is presented in section three.



The image based appearance reconstruction of the scene is
explained in section four. Real-time implementation is pre-
sented in section five. The results of our implementation are
presented in section six, followed by the conclusions and fu-
ture works in section 7.

2. Related works

Our method is related to Image-Based Rendering by
Warping (IBRW) methods [5, 10, 11, 13, 14], which cre-
ate 3D scenes by deforming or interpolating several 2D im-
ages with depth information. These methods generally limit
the viewpoints allowed : they must lie on a fixed view cell
or near the reference viewpoints. If the viewpoint exceed
the limits, cracks and holes appears [5], due to unseen parts
of the scene. In a last resort, holes can be filled while splat-
ting a pixel of the input image on several pixels of the output
image [10, 14], but the quality of the final image decreases.
To deal with these disocclusion artifacts, hybrid techniques,
such as Layered Depth Images [3, 10] capture parallax ef-
fects in a special data structure. This structure store the in-
visible part of the scene, and is used to fill the holes. But this
operation increases the rendering complexity, furthermore,
not all of the holes are filled. Impostors [1, 2, 6, 7, 15, 18],
replace distant geometry with textured planes. Nevertheless,
the replaced geometry must not generate parallax effects,
otherwise the same holes and cracks problems appear in the
reconstructed view. Another way to reconstruct the image of
the scene, is the image based approach. Lightfields and Lu-
migraph [8, 12] methods generate new images of the scene
by filtering and interpolating large sets of reference images.
One main problem is to interpolate correctly these images
to avoid blurring effects. The Light fields rely on oversam-
pling while the Lumigraph uses an approximation of the ge-
ometry. Due to the huge amount of reference images, the
main issue of these methods is data compression. Further-
more, as the sets of source images are taken from real scene
photographs, relighting is very difficult.

3. Surface reconstruction

The aim of our method is the reconstruction of the per-
pixel depth information, which correspond to the scene sur-
face, for an arbitrary viewpoint lying on the user-specified
path. That is, for a particular viewpoint, we want to re-
treive the surface of the scene. But instead of projecting the
whole scene onto the screen using a Z-buffer as commonly
done with geometric approach or instead of simply warp-
ing an image as done with IBRW methods, we determine
these depths using a compressed representation of the pix-
els depth variation along the path. The path corresponds to a
recorded camera motion between two 3D points, i.e. a fixed

set of observer positions and viewing directions as shown in
figure 1.
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Figure 1. Camera path

In our implementation, we fix the viewing directions to
the scene center so that we can retrieve all the camera loca-
tions by means of a simple linear interpolation in spherical
coordinates between the starting and the destination points.
However, other types of motions could be used, such as
splines for example. We simply chose this approach for that
sake of implementation simplicity.

3.1. Retreiving the scene surface

Figure 2. Scene surface from a viewpoint.
Left, an image of the scene. Right, the scene
surface points retreived and observed with
another point of view

We consider that the scene surface viewed throughout
a camera corresponds to the set of scene points projected
onto each pixel of the camera plane. (see figure 2) For a
specific viewpoint lying on the path, we obtain the scene



surface via the z-buffer of its image. (See figure 3) So, we
have to make the conventional rendering of the full geo-
metric scene mesh to obtain the depth information for each
pixels. These depth values are used to retrieve the surface
as shown in the figure 3 : considering an isolated pixel on
the screen, at coordinates (up, vp), we create the 3D point
Pc = (up, vp, z), in camera space coordinates. The z com-
ponent is the depth of the pixel, directly taken from the z-
buffer. To finally get the point in scene space, we simply
have to transform Pc with the inverted camera transforma-
tion matrix, that is Ps = M−1.Pc.
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Figure 3. Retreiving the surface of the scene
using the z-buffer of a viewpoint.

3.2. Per-pixel depth variation

Our method is based on the per-pixel depth variation
while moving the viewpoint along the path. To obtain this
information, we render the scene and store the depth com-
ponent of all pixels during the viewpoint evolution along
the path. (i.e., we store the z-buffers). To do this, we dis-
cretize the path with an arbitrary number of viewpoints, the
more we have, the better will be the reconstruction. Con-
sidering the depth variations of one isolated pixel, the aim
of our method is to approximate its variation with a small
set of linear varying intervals (figure 4), which will be ex-
plained in the next section.

3.3. Depth variation segmentation

The number of linear varying intervals is fixed to con-
trol the amount of memory required for the recontruction
(see section 3.4). So, the problem is to find the most suit-
able 2D segments which best approximate the real depths

variations. In figure 4, we have represented the camera po-
sition on the abscissa and the depth of the pixel on the ordi-
nates axis.
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Figure 4. Segmentation of the depth variation
for a pixel. In abscissa, the viewpoint coor-
dinate along the path. In ordinates, the pixel
depth. The real real recorded depths corre-
spond to the black points.

Our algorithm is adaptive : we first start the segmentation
by one segment joining the depth of the starting point and
the last depth. Then, the segment is subdivided at the point
which subsists the greatest depth difference between the lin-
early interpolated depth and the real depth (figure 4.a).

The process is repeated and we choose among the seg-
ments list the one with the greatest depth difference in or-
der to subdivide it. When the fixed number of segments is
reached, we stop the subdivisions.

During the segmentation, we delete all the segments
showing a depth disparity, that is the segments which links
two consecutive points (4.b). The depth disparity corre-
sponds, in the z-buffer of the scene, to a brutal depth vari-
ation commonly due to an edge of the scene, as shown in
figure 5.

Finally, the data structure stores a sorted list of segments,



Figure 5. Scene points projected onto a pixel,
when the camera moves along the path. The
left images shows the depth disparities.

for each pixel. One segment correspond to a motion inter-
vall, and consist of the following informations (see figure
4.c) :

• a starting depth d0

• an ending depth d1

• the abscissa T that define the ends of the segment.

The segments are stored following the T order, that is,
on the figure 4.c, from left to the right.

3.4. Depth recovering

To recover the depth of a pixel for a given time t on the
path, we just have to find the first segment Si which ends
with Ti > t, starting the lookup at the beginning of the pixel
sorted list. Given the segment data, we obtain, along with
the previous segment of the list, the depth d with a simple
linear interpolation :

d = d0 +
t − Ti

Ti − Ti−1

(d1 − d0) (1)

Finally, we are able to recover the depth of each pixel, for
each moment of the motion. The full scene surface recon-
struction is performed while finding all the depths of all pix-
els of the camera. To complete the scene reconstruction for
a given viewpoint, we now have to retrieve the scene vi-
sual appearance.

4. Depth appearance reconstruction

With the per-pixel depth information, i.e. the scene sur-
face, for a given viewpoint, the scene appearance recon-
struction is straightforward. We use a small set of depth im-

ages as reference viewpoints. Each of these viewpoints cov-
ers a part of the scene surface. These viewpoints are exter-
nal to the path, and positioned by the user. For each pixel,
we retrieve its object space 3D point P , as shown figure 6.
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Figure 6. Scene appearance recontruction for
one particular pixel (O) based on two refer-
ence viewpoints.

This point is projected on the camera plane of each ref-
erence viewpoint. We obtain a set of 2D points lying on the
camera plane of each viewpoint (O1 and O2 in this exam-
ple). Each of these points correspond to a point located on
the scene surface (P1 and P2). Among these pixels, the best
is the one for which its associated scene space point is near-
est to P . In this example (figure 6), the associated 3D point
of P viewed throughout the reference viewpoint 2 , is the
point P2 ; throughout the viewpoint 1, it is P1. As shown for
this pixel, the viewpoint 1 is the best viewpoint for this part
of the surface : the distance between P1 and P is smaller
than the distance between P2 and P . So we color the pixel
O with the color of the pixel O1.

Finally, we have to do these comparisons for all of the
pixels of the camera to obtain the final pixels colors dis-
played on the screen.

5. Real-time rendering

Real-time rendering is achieved by using the latest hard-
ware functionality. Pixels Shaders functionality allow us
to do expensive computations, (such as matrix transforma-
tion) and memory bandwidth expensive operations (like tex-
ture lookup), per pixel, in real-time . Our method is imple-
mented in two passes : the first pass reconstructs the sur-
face of the scene (see part 3) and the second pass, does the
color computation of the image (see part 4). Presently, we
have implemented the second pass fully in hardware, us-



ing the NVidia fragment shaders OpenGL extensions on a
GeForce FX 5600. The surface reconstruction step outputs
a depth texture, representing the reconstructed surface. This
texture is used for the second step which colors those depth
pixels, and ends the rendering of the scene.

5.1. Surface color restitution

Because of the limitation of the fragment shader size, we
can’t use an arbitrary number of viewpoints to reconstruct
the scene appearance. In practice, we have implemented two
methods :

• The first one is suitable if the scene viewed from the
path is fully covered by using three viewpoints. The
rendering is done in one pass with the direct imple-
mentation of the algorithm described above.

• The other one is used if we must use more than three
viewpoints. Then the rendering process is done in n

passes, n corresponding to the number of reference
viewpoints.

In the second case, one pass consists in computing the dis-
tance between the surface point P and the 3D point stem-
ming of the viewpoint (see figure 6) and output this dis-
tance into the z-buffer of the video card, along with the
retrieved color. This operation is repeated for each of the
reference viewpoints. The z-buffer comparison function al-
lows only the colors associated with a depth value smaller
than the previous stored one to be displayed. So, the ren-
dered color is the one associated with the smallest distance,
which is what we desire.

In fact, because of the z-buffer precision, we do not use
directly the distance between the two 3D points. Instead, we
reproject the two points into the camera plane, and compute
the distance in 2D.

Figure 7 shows a reconstructed scene at different mo-
ments of the interpolation : in this example we have used
three reference viewpoints, they are highlighted with differ-
ent colors : red for the first viewpoint, green for the second
and blue for the third one. Thus we can see which view-
point is used to color a pixel.

5.2. Depth disparity problems

During our experimentation, we have noticed some prob-
lems. The figure 9.a shows those artifacts. They result from
the pixel lookup when projecting P (Figure 6) onto the ref-
erence viewpoints. The problem is detailed on figure 8. P is
projected on the reference viewpoint onto a pixel giving the
P2 point instead of P1 because of the discretization of the
camera plane. To solve this problem, we compute the depth
of the pixel stemming from the reference viewpoint, with

Figure 7. Pixels origin during the real-time
rendering
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Figure 8. Discretization problem

a bilinear interpolation of its four adjacent pixels. The re-
sult is shown on the figure 9.b.

6. Results

Figure 10 shows results for a scene composed of the
Buddha mesh of the Stanford Computer Graphics Labo-
ratory. All our tests were done with a screen resolution of
512x512 pixels. Using this resolution, the pre-computation
time for our structure is about 30 seconds. For these three
meshes we use 15 segments to approximate the depth varia-
tion with no visual differences between the real depth, as
shown in the attached video clip. With 15 segments, the
memory used is about 20 Mb. Table 1 shows some details
on the differents meshs we use during our experimentations.
The table 2 shows the average frame rate we obtain us-
ing our method for a different number of reference images.
The second column shows the results without the depth seg-
mentation. The last column shows the results using bilinear
depth filtering and depths segmentation. Our rendering time
is independent of the scene complexity and heavily depends



b. With depth bilinear filtering
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Figure 9. Depth filtering

on the graphics card bandwidth between main memory and
texture memory. The second column shows this fact : with
one viewpoint, there is a small number of texture lookups
per pixel and the frame rate is high. With more than three
viewpoint, the number of texture lookup decrease the ren-
dering speed below 10 frames per second, but we used a low
end graphics card and these results would be far higher with
the latest hardware. The depth filtering decreases the render-
ing performances for the same reasons. The last line show
the results using an ATI Radeon 9700 Pro and DirectX 9
with Pixel Shaders 2.0. This card gives the best frame rates,
but is limited in terms of shader length and we can’t use the
depth filtering. Moreover we have to use the multi-pass al-
gorithm detailed in section 5.1 which decreases the preci-
sion of the interpolation. Figure 11 shows the visual differ-
ence between our reconstructed image and the real one. The
memory used is about 20 Mb for 15 segments, 13 Mb for 10
segments, 10 Mb for 8 segments and 6 Mb for 5 segments.
Compared to video compression, our method is able to re-
light the scene in real-time : we just have to store a normals
texture along with the z-buffer, for each viewpoint.

Model triangles Size (Mb) FPS
Armadillo 345944 30,5 4.5

Buddha 1087716 95 2
Dragon 871414 76,5 2.5

Table 1. Conventional rendering

# vp. No compr. 15 seg. + depth filter.
1 80 16 15
2 22 16 10
3 14 13 6

3 (ATI) 80 30 N.A.
4 (ATI) 75 25 N.A.

Table 2. Frame rates using our method

7. Conclusions and future work

We have presented a system for the real time visualiza-
tion of complex static scenes, along a fixed path. We use hy-
brid geometric - image based methods to obtain interactive
frame rates, in the order of 10-25 images per second. The
main advantage of our method is to provide such a frame
rate independently of the scene geometric complexity, at a
low memory cost, yet providing high quality images (e.g.
nearly undistinguishable from usual z-buffer rendering). To
our knowledge, this is the first method achieving this level
of quality. We have also described a new technique to re-
construct the scene image, based on a very small set of ref-
erence images. Presently, the first pass (reconstruction of
the surface) of our algorithm is done in software. However,
an hardware implementation with Pixels Shaders should be
feasible for this part of the algorithm. This is one of the
objectives of our future works. An error measurement be-
tween the real depth and the approximated depth would be
straightforward to provide. It will permit the user to con-
trol the quality of the reconstructed surface as a function
of the memory requirement. Another objective is to extend
the segmentation algorithm to reconstruct the scene for ar-
bitrary viewpoints, with no predefined path.
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Figure 10. results

Figure 11. Compressions comparison. First
line, left : the real mesh ; right : the start-
ing and ending viewpoints. Next lines : re-
sults using different compression rates : 15,
10, 8 and 5 segments, top to bottom. Right
row shows the visual difference with the real
mesh.


