
Real-Time High-Quality View-Dependent Texture Mapping
using Per-Pixel Visibility

Damien Porquet∗

MSI - University of Limoges
Jean-Michel Dischler†

LSIIT - University of Strasbourg
Djamchid Ghazanfarpour‡

MSI - University of Limoges

(a) Original mesh; 1.1 M
triangles; 50 FPS

(b) Simplified mesh; 6 K
triangles; 2000 FPS

(c) Our method applied
to the simplified mesh;
606 FPS.

Figure 1: Our method applied to the Buddha mesh from Stanford Graphics Laboratory.

Abstract

We present an extension of View-Dependent Texture Mapping
(VDTM) allowing rendering of complex geometric meshes at high
frame rates without usual blurring or skinning artifacts. We com-
bine a hybrid geometric and image-based representation of a given
3D object to speed-up rendering at the cost of a little loss of visual
accuracy.
During a precomputation step, we store an image-based version of
the original mesh by simply and quickly computing textures from
viewpoints positionned around it by the user. During the rendering
step, we use these textures in order to map on the fly colors and
geometric details onto the surface of a low-polygon-count version
of the mesh.
Real-time rendering is achieved while combining up to three view-
points at a time, using pixel shaders. No parameterization of the
mesh is needed and occlusion effects are taken into account while
computing on the fly the best viewpoints for a given pixel. More-
over, the integration of this method in common real-time rendering
systems is straightforward and allows applying self-shadowing as
well as other z-buffer effects.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism

∗e-mail: porquet@msi.unilim.fr
†e-mail: dischler@dpt-info.u-strasbg.fr
‡e-mail: ghazanfarpour@unilim.fr

Keywords: Real-Time Rendering, Image-Based Rendering, View-
Dependent Texture Mapping, Graphics Hardware

1 Introduction

Rendering of scenes composed of a huge set of polygons at real-
time rates is an important research topic in computer graphics. In
this context, the realism of 3D objects has been greatly improved
during the last decade, and particularly in the domain of real-time
rendering. This is mainly due to the fact that graphics hardware is
more and more powerful, beeing able to render millions of triangles
per second, allowing the user to display very complex meshes. Nev-
ertheless, needs for realism are constantly above hardware capacity.
This requires to find alternative approaches in order to reduce the
rendering cost of such meshes. For instance, it is now possible
to render a mesh composed of one million of triangles at 50 FPS.
However, a real scene composed of several complex objects quickly
decrease frame rate below an unacceptable threshold.

In this paper, we propose to extent View-Dependent Texture
Mapping (VDTM) [Debevec et al. 1998] to provide a solution to
this problem. Figure 1 shows the result of our method applied to
the Buddha mesh from the Stanford Graphics Laboratory which is
composed of 1.1 million triangles. Conventional rendering gives
50 FPS, using NVIDIA GeForce 6800GT graphics card, and ap-
proximately 600 FPS using our method, with very little discernible
difference.

The aim of our method is to cumulate the advantages of mesh
simplification with those of an image-based representation of the
mesh, to obtain the quality of the real mesh surface, while only
sending the simplified mesh and some textures to the graphics card.
The simplified mesh provides a rough approximation of the scene
surface location. The medium scale details, lost during simplifica-
tion, are recovered using textures computed from some adequate
viewpoints positionned around the real mesh. The main differences



with other methods, and in particular VDTM, are:

1. We do not apply any interpolation among pixel colors, thus
avoiding blurring effects.

2. We do not replace simplified parts of the geometry by map-
ping precomputed texture maps representing underlying com-
plex surface. Instead, we use the simplified mesh as basis to
retrieve the original surface points stored in the pre-computed
viewpoints. This avoids to maintain a parameterization of the
mesh.

3. We do not need to subdivide the simplified mesh polygons
to reduce blurring. Instead, we exclude bad viewpoints from
rendering on the fly.

4. Since our technique reconstructs for each pixel a good ap-
proximation of the real mesh surface, we can further relight
the scene on the fly with standard hardware based shading
models. This includes accurate shadowing effects.

The remaining parts of the paper are organized as follows. We
describe the previous work in section 2. In section 3, we present
an overview of the method. Then we describe in section 4 the pre-
processing step which mainly consists in gathering the reference
viewpoints. The core of our surface reconstruction algorithm is de-
scribed in section 5, followed in section 6 by a description of our
real-time implementation using shaders. Some results of our work
are presented in section 7, finally followed by conclusions and fu-
ture work.

2 Previous Work

This paper is aimed towards real-time rendering of complex 3D ob-
jects, which are composed of a huge number of triangles, using hy-
brid Image-Based Rendering (IBR) and geometrical approach. A
lot of work has been done in this context.

Geometrical mesh simplification methods [Cohen et al. 1998;
Sander et al. 2001; Hoppe 1996; Heckbert and Garland 1997; Lue-
bke and Erikson 1997] can be used to decrease the rendering cost of
a given mesh when seen from far distances, but this equally reduces
its realism.

Displacement mapping methods like [Cook 1984; Moule and
McCool 2002] add surface details on top of the simplified mesh
while only sending two dimensional maps containing height data to
the graphics card. But the reconstructed triangles need to be con-
ventionally projected on the screen in order to be displayed, which
does not reduce substantially the graphics card task.

Hybrid geometric and image-based methods like [Wang et al.
2003; Hirche et al. 2004] can reproduce the surface displacement
while computing it per-pixel, with graphics hardware, but either the
method cannot be applied to more than one mesh because of render-
ing time [Hirche et al. 2004], or it is restricted to small displacement
patterns, because of graphics memory cost [Wang et al. 2003].

Commonly, texture and bump maps can be applied to a simpli-
fied object surface in order to improve its appearance [Cohen et al.
1998], but the resulting surface is always flat: mapped images are
unable to take into account parallax effets due to underlying relief.
Moreover, this mapping approach requires to maintain a parameter-
ization.

More generally, pure image-based methods [Levoy and Hanra-
han 1996; Gortler et al. 1996; Buehler et al. 2001; Chen et al.
2002] can be used as alternative rendering techniques to avoid deal-
ing with a scene of a high geometrical complexity. Unfortunately,
these methods require a lot of memory, have difficulties to handle
illumination variations and remain complex to manipulate. For in-
stance, data decompression is a CPU intensive task, not well suited

for a real-time rendering system. Furthermore, relighting or use of
multiple instance of objects rendered with theses methods is hard
and sometimes impossible [Chen et al. 2002]. This makes their in-
tegration in a classical real-time rendering system a very difficult
problem.

Hybrid methods combining image-based and geometrical ap-
proaches [Debevec et al. 1996; Pulli et al. 1997; Debevec et al.
1998; Cohen et al. 1998; Pighin et al. 1998; Oliveira et al. 2000;
Yamakasi et al. 2002; D́ecoret et al. 2003] have also known some
noticeable success, but all of these methods still raise several prob-
lems like blurring, popping and skinning or they have some restric-
tions concerning the nature of the mesh complexity.

Among these last works, the two main approaches related to
our method are Appearance Preserving Simplification [Cohen et al.
1998] and View-Dependent Texture Mapping [Debevec et al. 1996;
Debevec et al. 1998]. We therefore describe these two approaches
with more details in the next two paragraphs.

Appearance Preserving Simplification In [Cohen et al. 1998],
a complex mesh is first simplified with purely geometrical method,
then, in order to compensate lost details, a bump texture represent-
ing the original surface is applied to the simplified mesh. The main
drawback in using such a method in real-time applications is that
the texture needs to be reconstructed at each level of details (LOD).
The texture can be precomputed for each LOD, but this will ex-
clude for using dynamic simplification, such as in [Hoppe 1996].
Furthermore, the well known artifact of texture mapping is that vis-
ible relief is only appearance: mesh surface remains flat, which can
be seen at grazing angles. Also, visible simplified mesh edges lead
to unrealistic appearance.

In comparison, our method does not require to generate bump
maps, thus avoiding to maintain a parameterization of meshes. It
only needs a raw approximation of the original surface to recover
relief stored in reference views. Moreover, this approximate mesh
is able to change during rendering because it is only used as a start-
ing point for our visibility computations.

View-Dependent Texture Mapping VDTM was first intro-
duced by Debevecet al. [Debevec et al. 1996] in off-line rendering
context, and extended to real-time in [Debevec et al. 1998]. The
main goal of VDTM is to obtain novel views of a scene while only
using a set of reference photographs (reference viewpoints) and a
simplified mesh of the scene geometry. This mesh is constructed
by-hand from photographs. During rendering, these photographs
are mapped to it. Displaying this mesh from a virtual viewpoint1

allows to get new views of the scene. Since more than one reference
viewpoint can see a face, photographs are blended using weighted
average of colors. Weighting function is based on the proximity
of reference viewpoints from virtual viewpoint. In their real-time
implementation, Debevecet al. use a view-map of closest view-
ing angle to precompute a set of reference viewpoints used to map
a given polygon. When a polygon is partially visible from a ref-
erence viewpoint, it is subdivided and missing textures are filled
with color interpolation. These subdivisions increase the number
of polygons in the scene and are prone to numerical imprecision,
which can be problematic in some cases (highly complex models
and/or meshes composed of small polygons). Moreover the view-
map structure does not incorporate well in a real-time rendering ap-
plication because view-map queries are performed by the CPU. In
spite of the fact that queries are simple and fast, they must be eval-
uated one time per polygon, which can potentially be heavy. More-
over, storing each faces view-map requires a significant amount of
system memory in the case of a complex model. From a general
point of view, methods based on VDTM [Debevec et al. 1998; Pulli

1That is a camera position different from reference viewpoints.



et al. 1997; Pighin et al. 1998; Yamakasi et al. 2002] are fast but
deal at best partially with occlusion effects, thus generating blur-
ring, ghosting or popping. Moreover relighting is difficult, even
sometimes impossible.

In our case, among a sparse set of viewpoints, we do not use
any kind of view-map. We only select three of them to be used
for all rendered triangles. Moreover, we do not blend images
mapped to the mesh: for a given pixel to be drawn, we simply
determine the best viewpoint to use. This approach leads to two
main advantages compared to VDTM: firstly, it avoids to subdivide
faces, thus simplifying preprocessing stage. Secondly, we do not
need to blend multiple reference images to get the pixel color, thus
avoiding blurring and skinning artifacts. Furthermore we are able
to change on the fly the simplified mesh with another one: this can
be useful for LOD-based real-time rendering applications.

3 Overview of the method

Our method consists in replacing complex 3D objects laid out in a
scene with geometrically simplified versions of them over which we
apply our rendering algorithm. The aim is to obtain the nearest vi-
sual quality possible between the original object and the simplified
one.

To obtain simplified meshes, we can use common mesh simpli-
fication algorithms such as, for instance [Hoppe 1996; Garland and
Heckbert 1997].

The rendering process consists in displaying simplified meshes
using our algorithm (see section 5) implemented with recent per-
pixel computing capabilities of graphics hardware (see section 6).

During a preprocessing pass, the user must grab some viewpoints
for each complex object of the scene. This task is carried out while
navigating around the complex model and storing some special kind
of snapshot as textures.

4 Reference viewpoints acquisition

Considering an isolated complex mesh, firstly we have to grab some
reference viewpoints of it. This task is quickly accomplished by the
user, while navigating around the object. The number of reference
images depends on the mesh complexity but is not large: for in-
stance we used nine viewpoints for the Stanford dragon mesh and
seven for the buddha. The capture process and the nature of the
information stored in the reference viewpoints are detailed in the
next section. When this operation is finished we obtain a set of
viewpoints associated with the object.

A subset composed of three of them is used during rendering
stage in order to apply our reconstruction algorithm. The aim of the
method, occuring during rendering process, is to compute the final
color and depth of each rendered pixel, thus by extracting adequate
points stored in the reference viewpoints. This task is completely
done by the GPU, using pixel shaders.

A viewpoint is a snapshot of the real mesh for a given camera
position. It is a structure composed of the camera transformation
matrix, used to transform points from camera space to scene space
(see section 5.1), and three kinds of textures: colors texture, depths
texture and normals texture2. Thus, we have to render three times
the complex object for a given camera position. Figure 2 shows two
reference viewpoints and obtained images.

Colors texture of the mesh is obtained while drawing it without
lighting. Textured models (see middle images on figure 2) can be

2It is similar in nature to the G-Buffer structure used in Deffered Shading
[Deering et al. 1988; Harris and Hargeaves 2004].

Reference 
viewpoint

Normals Colors Depths

Complex mesh

Reference 
viewpoint

Figure 2: Viewpoint textures

used since we just need raw surface colors, used as a base for the
lighting computations (Phong model).

Depths texture is retreived while reading the depth buffer con-
tent (see bottom and right images of figure 2). We used a precision
of 16 bits.

Normals texture is obtained while rendering the mesh and sub-
stituting vertices color component with normal component (top and
left images on figure 2). To store signed vector orientation in un-
signed RGB components texture, we simply apply a linear trans-
formation3. Later, we recover the signed components with the sy-
metrical operation. We finally obtain a RGB texture representing
for each pixel the rendered mesh surface orientation in object local
space.

5 Rendering process

Given a simplified mesh and its set of reference viewpoints, we are
able to apply directly our method. For each rendered pixel of the
simplified mesh, our pixel shader computes its depth and color us-
ing a subset of three reference viewpoints. Among the viewpoint
set, the three selected viewpoints are the three closest to the ac-
tual camera center of projection. These three viewpoints covers the
mesh surface from three differents angles4. Reconstruction consists
in selecting the best point stemming from these reference view-
points in order to compute lighting and depth of each rasterized
pixel.

To find the point stemming from a given viewpoint at 2D screen
position (up,vp), we use projective texture mapping as explained
below.

5.1 Multiple projective textures mapping

Projective texture mapping is based onreprojectionwhich consists
in transforming a given pixel lying on the projection plane of a cam-
era into scene space, using a depth map.
Considering an isolated pixel on a camera at coordinates(up,vp),
we create the 3D pointPc = (up,vp,z), in camera space coordi-
nates. Thez component is the depth of the pixel, directly taken
from a depth texture (or z-buffer). To finally get the point in scene
space, we simply have to transformPc using the inverted camera
transformation matrix, that isPs = M−1.Pc.

3let −→n (x,y,z)> x,y,z∈ [0..1] be a normal, we store in a given pixel
c(r,g,b) the value((x+1)/2,(y+1)/2,(z+1)/2).

4As detailed in [Buehler et al. 2001], is not an ideal solution, but this
method is fast to compute and gives good results with our algorithm.



In our algorithm, we have to carry out this operation three times,
one time per reference viewpoint. As previously said, reprojecting
a pixel means one matrix multiplication. To implement efficiently
this operation, we used projective texture mapping in order to pre-
compute pixels projected positions onto each reference viewpoint
plane. This allows to delocalize this reprojection into vertex shader
stage of the graphics pipeline instead of computing this for each
drawn pixel. This will be detailed in section 6.

Considering a triangle ABC to be rendered (see figure 3), each
of its vertices are projected into each reference viewpoints space.

Reference 
viewpoint #1

Virtual viewpoint

Rendered 
triangle

Reference 
viewpoint #2

A

B

C

Simplified mesh

A
1

B
1

C
1

A
2

B
2

C
2

Figure 3: Projective texture coordinate generation.Ai ,Bi ,Ci are 2D
projected texture coordinates ofA,B,C triangle vertices, for each
viewpoint i.

In the figure we have only considered two reference viewpoints
for clarity of explanations: given the pointA, we then obtain the
2D pointsA1 andA2. These points are 2D texture coordinates of
the vertex, while considering reference viewpoints planes of pro-
jections as texture spaces.

5.2 Per-Pixel Visibility

Let us considerP, a rendered point of the simplified mesh (see fig-
ure 4).

Real object surface

Simplified surface

V
1

V
2

Camera position

P

P
2

O
2O

1

O

P
1

P'
δ
err

δ
simplif

Figure 4: Determination of pixel visibility. For clarity of explana-
tion, we use only two reference viewpoints in this figure.

P is projected onto the observer camera plane, in positionO.
P gives a rough approximation of the real scene surface pointP′.
To find the most suitable point stored in the reference viewpoints

(V1 andV2 in the figure), we getO1 andO2, the projective texture
coordinates ofP for each viewpoint.

Each of these points correspond by retroprojection to a point be-
longing to the real scene surface (P1 andP2). To compute this re-
projection, we extract thez component ofO1 andO2 while simply
fetching the depth stored in the viewpoints depth texture.

AmongP1 andP2, the one which best approximateP′ is the one
for which its associated scene space point is nearest toP. In this
example, viewpointV2 is the best: distance betweenP2 andP is
smaller than distance betweenP1 andP.

Finally, we apply this method using three viewpoints instead of
two. Our viewpoint selection criterion guarantees that we use the
best possible viewpoint among the selected ones. In other words,
occlusion effects are taken into account.

Figure 5 shows our visibility algorithm in action. The three
selected reference viewpoints are shown in left part of the figure.
Right part shows close-ups of our method for four different camera
positions. In these close-ups, red pixels means that best reference
viewpoint for these pixels is viewpoint #1, and so on for green and
blue pixels.

viewpoint #1

Viewpoint #2

(a) (b)

(c) (d)Viewpoint #3

Figure 5: Per-pixel visibility algorithm: selected viewpoints used
to compute pixels color.

5.3 Discussion

As shown in figure 4, this method produces an errorδerr depending
on the proximity of simplified surface from real surface (δsimpli f).
But in practice this error is hardly noticeable even with heavily sim-
plified objects (we highlight these reconstruction errors in section
7). This is mainly due to the high quality of geometrical simpli-
fication algorithm we employ [Hoppe 1996], but also because our
selection criterion provides the closer optical ray (in angular term)
from the optical ray of the rendered pixel (that is[OP]).

For our method, when reference viewpoints entirely covers the
object surface, the worst case in term of texture coordinates devi-
ation 5 would be when two of the three viewpoints are occluded
because in this case only one viewpoint will provide useful relief
informations. Similarly, the best case would be when the three
viewpoints ”see” the pixel because we will use the one which pro-
vides the smallest texture deviation. So, when the user positions the
viewpoints, he must take care of theses considerations. This is an
important factor for the quality of the reconstruction.

5That isδerr projected onto a viewpoint



6 Real-time Implementation

This section deals with technical details about our real-time imple-
mentation. We first describe vertex and pixel shader, followed by
texture filtering consideration. Then we briefly describe self shad-
owing effects we used in results section.

One thing to note is that all our computations are driven in
object-space. This simply requires to transform viewer camera and
light(s) positions into each object space before rendering. We im-
plemented our algorithm using shaders through OpenGL fragment
program extensions and NVIDIA CG compiler.

6.1 Shaders

As for all GPU programs, our shaders are splitted into two parts:
a vertex program and a pixel (or fragment) program6. A shader
program is characterized by its constant parameters, its input and
output data. Constant parameters means data which will not be
modified during object rendering.

Vertex program In our case,constant parametersare camera
transformation matrix and the three viewpoints transformation ma-
trices.
Input dataare vertices data: 3D position and normal, in object
space, and texture coordinates.
Output dataare values that are interpolated along triangle vertices.
Here, they are position in camera space, position in object space
and three texture coordinates channels corresponding to projective
texture coordinates of the vertex into each reference viewpoints.

Thus, operations carried out in this stage are only vertex projec-
tions.

Fragment program Constant parametersare data associated to
the three selected viewpoints. For each viewpoint, data are: colors
texture, normals texture, depth texture and inverted transformation
matrix. We have to add eye transformation matrix, its correspond-
ing inverted matrix, light position and object material parameters
(such as specular coefficient).
Input dataare vertex program output parameters.
Output dataare pixel color and its depth.

Operations carried out in this stage are detailed in section 5.2.
Main operations are point space transformations: from object space
to camera space to screen space. Thus we have to switch between
NDC7 and NWC8 when fetching texels.

6.2 Texture filtering

Because we use projective texture mapping, we principally have
to deal with texture magnification artifacts (see [Everitt 2001]). In
this case, graphics cards linear interpolation can reduce artifact but
for very close views we do not have much to do: surface looks
blurry. This kind of blur is less noticeable than VDTM blur be-
cause it comes from linear interpolations among pixels colors from
thesameimage, and not from blending of completely different im-
ages. Nevertheless, to reduce these artifacts, user must take care of
maximizing screen space when grabing viewpoints in order to use
at best screen resolution.

6.3 Shadow Projection

We have implemented shadow projection and self-shadowing using
Williams method [Williams 1978]. It requires one more projection

6We provide shaders source code on our website, see Results section.
7Normalized Device Coordinate
8Normalized Window Coordinates

into fragment shader stage: when pixel extraction is computed, we
project the computed point into light camera and compare its depth
with the one stored into light depth texture.
Thus, for a given object, we have to render its simplified mesh from
light camera and store obtained z-buffer. Render-to-texture graph-
ics cards capabilities makes this task easy and cheap to use. Fi-
nally, we have to add depth texture, light transformation matrix and
its inverted matrix to constant parameters of the fragment shader.
In scene space, in order to maximize z-buffer precision, we simply
modify light camera frustum parameters to zoom-in objects.

7 Results

For all results presented in this section, we used a resolution of
512x512 pixels for display as well as for textures. We employ
NVIDIA GeForceFx 6800GT to implement our shader algorithm.
All our experimentations were driven with a 2GHz AMD Athlon
XP PC. The shader programs were generated using NVIDIA Cg
compiler.
To compare results of our method with conventional rendering,
we employ ARBVERTEX BUFFER OBJECTOpenGL extension to
render complex objects because it provides the highest performance
available to display geometrical meshes.

Please note that shaders source code and videos show-
ing our method in action are located on our web site:
http://msi.unilim.fr/∼porquet

Complete scene Figure 6 and 10 show our method results ap-
plied to a complete scene composed of multiples instances (clones)
of the same mesh, in order to stress the graphics card.

In figure 6 we render 14 meshes composed of 1.1 M triangles
each: we get approximately 2 FPS. Using our method, we obtain 67
FPS while using 14 simplified meshes composed of 10 K triangles
each.

In figure 10, we render 140 instances of the Dragon mesh, com-
posed of approximately 871K triangle each, at 0.3 FPS. Using our
method and simplified meshes composed of 4000 triangles, we ob-
tain 32 FPS.

As shown, our reconstructed scenes are hardly discernible from
original scenes.

Self Shadowing Closer look to the shadow projection. Shadows
are deformed in flat triangles since we reconstruct the geometry of
the real scene, as shown in right image of figure 7. In this image,
we used a simplified mesh composed of 2000 triangles.
Left image show our shadow projection applied to the dragon mesh
(10 K triangles).

Figure 7: Shadow projection.



(a) Original scene: 15 M triangles, 2.21 FPS (b) Reconstructed scene: 140 K triangles, 66.73 FPS

Figure 6: Scene composed of multiples clones of the Buddha mesh. The white lines around the mesh in the background show the directions
of reference viewpoints.

Rendering quality Figure 9 highlight the visual differences be-
tween the original mesh and several simplified meshes. We sim-
ply substract colors of the original mesh with colors of simplified
meshes: the greatest is the difference, the darker are the pixels. As
shown, the main difference between the complex and the simplified
mesh images are located onto the meshes borders.

This is emphasized in figure 8, which gives a close view of fig-
ure 1. As shown, meshe borders reveals the simplified mesh.

Memory cost While not using any optimizations, memory cost
is acceptable: 3 texture per viewpoint use 2 Mb of video memory
(using a definition of 512x512 pixels). Nevertheless, it would be
straightforward to greatly improve memory cost while using tex-
ture compression for depths and colors map, and an indexed nor-
mals map. Note that if the object is textured using texture coordi-
nates based on vertices position, we do not need to store reference
viewpoints colors map.

8 Conclusion and Future Work

We have presented a simple and efficient system for real-time visu-
alization of complex static geometrical objects. Our work main ad-
vantage is to provide such a frame rate almost independently from
the geometrical complexity of the scene, yet providing high quality
images (e.g. nearly undistinguishable from usual z-buffer render-
ing).

We extended View-Dependent Texture Mapping (VDTM) while
simplifying preprocessing step and improving rendering quality (no
blurring effects coming from image blending). Our method is fast
and simple to implement using latest graphics cards. It is mainly
adapted to interactive rendering applications such as games, be-
cause surface reconstruction errors, although small, can be unac-
ceptable for some kind of applications. In games, these visual er-
rors are less noticeable because priority is given to fast interactions
instead of visual accuracy.

One objective of our future works is to extend the rendering pro-
cess in order to obtain detailed borders silhouette even on very sim-

plified meshes. In the same way, we have to improve the algorithm
to reduce surface deviation: image warping approach would be a
solution. Another objective is to find a method that decrease the
memory consumption while capturing automatically the smallest
viewpoint set and also while minimizing empty parts in viewpoint
textures.

(a) Original object (b) Reconstructed object

Figure 8: A close view of the reconstructed surface.

References

ALIAGA , D. G., AND LASTRA, A. A. 1998. Smooth transitions
in texture-based simplification.Computers and Graphics 22, 7
(January), 71–81.

ALIAGA , D. G. 1996. Visualization of complex models using
dynamic texture-based simplification.IEEE Visualization ’96.

BUEHLER, C., BOSSE, M., MCM ILLAN , L., GORTLER, S.,AND
COHEN, M. 2001. Unstructured lumigraph rendering. InPro-
ceedings of the 28th annual conference on Computer graphics
and interactive techniques, ACM Press, 425–432.



(a) 12 K tri. (b) 6 K tri. (c) 3 K tri.

Figure 9: Visual difference between differents simplified meshes
and the original mesh.

CATMULL , E., AND SMITH , A. R. 1980. 3-d transformations of
images in scanline order. InProceedings of the 7th annual con-
ference on Computer graphics and interactive techniques, ACM
Press, 279–285.

CHANG, C., BISHOP, G., AND LASTRA, A. 1999. Ldi tree :
A hierarchical representation for image-based rendering.Proc.
SIGGRAPH 99(August), 291–298.

CHEN, S.,AND WILLIAMS , L. 1993. View interpolation for image
synthesis.Proc. SIGGRAPH 93(August), 279–288.

CHEN, W.-C., BOUGUET, J.-Y., CHU, M. H., AND
GRZESZCZUK, R. 2002. Light field mapping: efficient
representation and hardware rendering of surface light fields.
In Proceedings of the 29th annual conference on Computer
graphics and interactive techniques, ACM Press, 447–456.

CHEN, S. 1995. Quicktime vr - an image-based approach to virtual
environment naviguation.Proc. SIGGRAPH 95(August), 29–
38.

COHEN, J., OLANO , M., AND MANOCHA, D. 1998. Appearance-
preserving simplification. InComputer Graphics, Annual Con-
ference Series, ACM SIGGRAPH, ACM Press, 115–122.

COOK, R. L. 1984. Shade trees. InProceedings of the 11th
annual conference on Computer graphics and interactive tech-
niques, ACM Press, 223–231.

DARSA, L., COSTA SILVA , B., AND VARSHNEY, A. 1997. Navi-
gating static environments using image-space simplification and
morphing. InProceedings of the 1997 symposium on Interactive
3D graphics, ACM Press, 25–34.

DEBEVEC, P., TAYLOR , C., AND MALIK , J. 1996. Modeling and
rendering architecture from photographs : A hybrid geometry-
and image-based approach.Proc. SIGGRAPH 96(August), 11–
20.

DEBEVEC, P., YU, Y., AND BOSHOKOV, G. 1998. Efficient
view-dependent image-based rendering with projective texture-
mapping. In9th Eurographics Rendering Workshop.

DÉCORET, X., DURAND, F., SILLION , F.-X., AND DORSEY, J.
2003. Billboard clouds for extreme model simplification.Proc.
SIGGRAPH 2003(August).

(a) Original scene: 122 M tri., 0.3 FPS

(b) Reconstructed scene: 565 K tri., 32 FPS

Figure 10: Complete scene composed of Dragon mesh clones.

DEERING, M., WINNER, S., SCHEDIWY, B., DUFFY, C., AND
HUNT, N. 1988. The triangle processor and normal vector
shader: A VLSI system for high performance graphics. In
Proceedings of the ACM SIGGRAPH Conference on Computer
Graphics (SIGGRAPH 88), ACM Press, Atlanta, Georgia, USA,
R. J. Beach, Ed., 21–30.

EVERITT, C. 2001. Projective Texture Mapping. NVIDIA,
http://developer.nvidia.com/. White paper.

GARLAND , M., AND HECKBERT, P. S. 1997. Surface simplifi-
cation using quadric error metrics. InComputer Graphics (SIG-
GRAPH’97 Proceedings).

GORTLER, S., GRZESZCZUK, R., SZELISKI , R., AND COHEN,
M. F. 1996. The lumigraph.Proc. SIGGRAPH 96(August),
43–54.



GUENNEBAUD, G., BARTHE, L., AND PAULIN , M. 2004. De-
ferred Splatting. InComputer Graphics Forum, vol. 23. Euro-
pean Association for Computer Graphics and Blackwell Publish-
ing, PO Box 805, 108 Cowley Road, Oxford, United Kingdom,
septembre, 1–11.

HARRIS, M., AND HARGEAVES, S. 2004. Deferred Shading.
NVIDIA, http://developer.nvidia.com/. White paper.

HECKBERT, P. S.,AND GARLAND , M. 1997. Survey of polygonal
surface simplification algorithms. Tech. rep.

HIDALGO , E., AND HUBBOLD, R. 2002. Interactive rendering of
complex and animated scenes : Hybrid geometric - image based
rendering.Computer Graphics Forum (Eurographics 2002).

HIRCHE, J., EHLERT, A., GUTHE, S.,AND DOGGETT, M. 2004.
Hardware accelerated per-pixel displacement mapping. InPro-
ceedings of the 2004 conference on Graphics interface, Cana-
dian Human-Computer Communications Society, 153–158.

HOPPE, H. 1996. Progressive meshes. InProceedings of the 23rd
annual conference on Computer graphics and interactive tech-
niques, ACM Press, 99–108.

HORRY, Y., ANJYO, K., AND ARAI , K. 1997. Tour into the pic-
ture: using a spidery mesh interface to make animation from
single image.Proc. SIGGRAPH 97, 225–232.

JESCHKE, S.,AND WIMMER , M. 2002. Textured depth meshes for
real-time rendering of arbitrary scenes.Eurographics Workshop
on Rendering.

LEVOY, M., AND HANRAHAN , P. 1996. Light field rendering.
Proc. SIGGRAPH 96, 33–42.

LUEBKE, D., AND ERIKSON, C. 1997. View-dependent sim-
plification of arbitrary polygonal environments. InProceedings
of the 24th annual conference on Computer graphics and inter-
active techniques, ACM Press/Addison-Wesley Publishing Co.,
199–208.

MARK , W. R., MCM ILLAN , L., AND BISHOP, G. 1997. Post-
rendering 3d warping. InProceedings of the 1997 symposium on
Interactive 3D graphics, ACM Press, 7–16.

MCM ILLAN , L., AND BISHOP, G. August 1995. Plenoptic mod-
eling: An image-based rendering system.Proceedings of SIG-
GRAPH 95, 39–46. ISBN 0-201-84776-0. Held in Los Angeles,
California.

MCM ILLAN , L. 1995. Computing Visibility Without Depth. Tech.
Rep. TR95-047, Department of Computer Science, University of
North Carolina - Chapel Hill, Oct.

MCM ILLAN , L. 1999. An image based approach to three-
dimensional computer graphics.Technical report, Ph.D. Dis-
sertation, UNC Computer Science TR97-013.

MOULE, K., AND MCCOOL, M. 2002. Efficient bounded adaptive
tessellation of displacement maps. InProceedings of the Graph-
ics Interface 2002 (GI-02), Canadian Information Processing So-
ciety, Calgary, Alberta, 171–180.

OLIVEIRA , M., G, G. B., AND MCALLISTER, D. 2000. Relief
texture mapping.Proc. SIGGRAPH 2000, 359–368.

PAULO , W., MACIEL , C., AND SHIRLEY, P. 1995. Visual navi-
gation of large environments using textured clusters.Symposium
on Interactive 3D Graphics., 95–102.

PFISTER, H., ZWICKER, M., VAN BAAR , J., AND GROSS, M.
2000. Surfels: elements as rendering primitives. InProceedings
of the 27th annual conference on Computer graphics and inter-
active techniques, ACM Press/Addison-Wesley Publishing Co.,
335–342.

PIGHIN , F., HECKER, J., LISCHINSKI, D., SZELISKI , R., AND
SALESIN, D. H. 1998. Synthesizing realistic facial expressions
from photographs. InProceedings of the ACM Conference on
Computer Graphics (SIGGRAPH-98), ACM Press, Orlando, FL,
USA, 75–84. ISBN 0-89791-999-8.

PULLI , K., COHEN, M., DUCHAMP, T., HOPPE, H., SHAPIRO,
L., AND STUETZLE, W. 1997. View-based rendering: Visual-
izing real objects from scanned range and color data. InEuro-
graphics Rendering Workshop 1997, Springer Wein, New York
City, NY, J. Dorsey and P. Slusallek, Eds., Eurographics, 23–34.
ISBN 3-211-83001-4.

RUSINKIEWICZ, S., AND LEVOY, M. 2000. Qsplat: a multireso-
lution point rendering system for large meshes. InProceedings
of the 27th annual conference on Computer graphics and inter-
active techniques, ACM Press/Addison-Wesley Publishing Co.,
343–352.

SANDER, P. V., SNYDER, J., GORTLER, S. J.,AND HOPPE, H.
2001. Texture mapping progressive meshes. InProceedings of
the 28th annual conference on Computer graphics and interac-
tive techniques, ACM Press, 409–416.

SEGAL, M., KOROBKIN, C., VAN WIDENFELT, R., FORAN, J.,
AND HAEBERLI, P. 1992. Fast shadows and lighting effects
using texture mapping.SIGGRAPH Comput. Graph. 26, 2, 249–
252.

SEITZ, S. M., AND DYER, C. R. 1996. View morphing. InPro-
ceedings of the ACM Conference on Computer Graphics, ACM,
New Orleans, LA, USA, 21–30. ISBN 0-201-94800-1.

SHADE, J., GORTLER, S.,WEI HE, L., AND SZELISKI , R. 1998.
Layered depth images. InProceedings of the 25th annual con-
ference on Computer graphics and interactive techniques, ACM
Press, 231–242.

WANG, L., WANG, X., TONG, X., L IN , S., HU, S., GUO, B.,
AND SHUM , H. 2003. View-dependent displacement mapping.
Proc. SIGGRAPH 2003.

WILLIAMS , L. 1978. Casting curved shadows on curved surfaces.
In Proceedings of the 5th annual conference on Computer graph-
ics and interactive techniques, ACM Press, 270–274.

WIMMER , M., WONKA , P., AND SILLION , F. 2001. Point-based
impostors for real-time visualization.Eurographics Workshop
on Rendering.

WONKA , P.,AND SCHMALSTIEG, D. 1999. Occluder shadows for
fast walkthroughs of urban environments.Computer Graphics
Forum (Eurographics ’99), 51–60.

YAMAKASI , S., SAGAWA , R., KAWASAKI , H., IKEUCHI, K.,
AND SAKAUCHI , M. 2002. Microfacet billboarding.Proc. of
the 13th Eurographics Workshop on Rendering., 175–186.

ZHANG, H., MANOCHA, D., HUDSON, T., AND HOFF, K. 1997.
Visibility culling using hierarchical occlusion maps.Proc. SIG-
GRAPH 97, 77–88.


	Introduction
	Previous Work
	Overview of the method
	Reference viewpoints acquisition
	Rendering process
	Multiple projective textures mapping
	Per-Pixel Visibility
	Discussion

	Real-time Implementation
	Shaders
	Texture filtering
	Shadow Projection

	Results
	Conclusion and Future Work

